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Abstract 
The nature of the intelligence found in intelligent systems (IS) can be 
enumerated & framed as categorical dimensions as discussed by as in 
Messina et al (2002) & Berg-Cross (2002) or built into Agent 
Ontologies.  Berg-Cross’s network hierarchy of dimensions include 
Behavioral/What, Symbolic/Functional Architecture (How), 
Environmentally Reactive (External why) which is organized by a 
Goal-oriented and Intentional (Internal why) component.  This paper 
extends the discussion of  IS performance in two ways.  First, the 
complex, incremental growth of intelligent functionalities is 
discussed as a Ptolemaic situation, where multiplies paradigms co-
exist but success has been gradual.  Relevant examples include 
commonsense physics and complex problem solving, which are 
simpler than the full IS problem, but which have afforded only 
modest progress.  
It is argued that in such times there exist fundamental definitional 
problems which requires more than incremental growth piling up data 
about functional models of intelligence. Currently several paradigms 
seem to be under discussion simultaneously.   The IS field may be in 
an hyper paradigmatic situation which requires integration of 
multiple paradigms more than a shift between paradigms.  The 
second thrust considers the value performance issues of 
encompassing pragmatic perspective.  Aspects of Pragmatic 
Philosophy’s  approach to knowledge, truth and reasoning are 
highlighted.  Charles Peirce’s pluralistic formulations on reasoning 
and knowledge are eludidated by Sowa’s knowledge soup metaphor 
and the rational-empirical cycle of reasoning.  ”Better” measures of  
IS performance are likely to be found in such pragmatic models that 
look at “success” in  dynamic environment adding cognitive 
component to traditional KR semantic and syntactic properties .  
Measurement would then include ”Insider" type of Belief, Desire and 
Intention controlling “social” level metrics, coupled to "outsider" 
performance metrics. 
 
1. Introduction  
 

Over the last 30 years or so AI and cognitive psychology have 
been friendly collaborators with distinct but related goals when it 
comes to discussions of intelligence and intelligence systems. 
The annual PerMIS workshops provide a useful forum for both 
AI and Cognitive Science professionals to move beyond isolated 
phenomena and capabilities to discuss ”complete intelligent 
systems”.  As part of the annual PerMIS conferences several 
frameworks have been proposed for characterizing the 
intelligence found in intelligent systems (IS).  Two of the 
broadest, ambitious but practical approaches are found in 
Messina et al (2001) and Meystel  (2001). They enumerate a 
series of functional “features” ranging from sensing to various 
knowledge and learning features. Meystel (2001) organizes work 

around a multi-dimensional knowledge "space" describing 
intelligent functions. Thus, a system is functionally intelligent 
because it has “background knowledge” or it is intelligent 
because it responds appropriately to a stimulus and systems can 
be located in a vector space of these dimensions.  A listing of IS 
capabilities is illustrative of this approach. Both Messina et al 
(2001) and Meystel  (2001) propose the long list of "properties" 
that can "tacitly (be) considered to pertain to intelligent 
systems".  Contrasting lists are shown in Table 1 and there is 
almost no overlap or easy mapping between the items.  Messina 
et al (2001) more closely represents a functional list whereas 
Meystel (2001) uses a sense-think-act cycle as part of a 
structured approach to relate knowledge, success and learning. 
In this model action is not generated directly by perception, but 
there is a mediated mechanism for behavior generation. A 
knowledge filled “World Mode” de-couples perception and 
action and allows “rational” behavior.  There are several 
problems with this approach starting with the use of sequential 
sense-think-behavior modules.  Cognitive studies show 
perceptual-motor interactions as tasks are learned.  Also 
“knowledge flowing” means very different things (different 
representation from geometric to feature based to symbolic) in 
different parts of the “cycle”. It is an open issue how knowledge 
states are represented and whether the meaning of symbols must 
be grounded in the system’s own interactions with the real 
world.1  All of which leads to knowledge translation/integration 
issues 

 
Table 1 Contrasting IS Functional Lists 

 

Structuring functions into a coherent model by means of 
theory is one way of improving over the simple lists.   Meystel  
(2001) proposed a general intelligence design, depicted in 
Figure 1 (after Gudwin 2000), consisting of six "consecutive 
functional elements connected by a flow of "knowledge".   

 

                                                           
1 Still another mix is classic symbol processing AI functionalities 
with non-symbolic connectionist approach.   



 
 
 
Figure 1 After Meystel  (2001) Model of an IS 
 
This diagram follows a traditional theory to explain the 
behavior of an intelligent system: 

 
 “Intelligence is a faculty of the system that 
 provides an ability of a system to act  
appropriately in an uncertain environment, 
 where appropriate action is that which 
 increases the probability of success, and success  
is the achievement of behavioral sub-goals   
that support the system's ultimate goal.”  
Albus (1991) 

It is intriguing to note how this model differs from Shannon's 
communication theory.  That theory-based model consists of 
six elements: information source, transmitter, channel, noise 
source, receiver and destination which are selectively linked 
by directed relations according to the direction of 
communication. In the theory communication takes place 
when a message produced by the information source is 
conveyed into the channel by the transmitter. In the channel 
the message may be distorted by signals from the noise source. 
At the other end of the communication system the receiver 
receives the signals from the channel, passing them on to the 
destination for final processing. With this description Shannon 
conceptually summarized those aspects of information falling 
under the heading of functional-cybernetic information. 
Moreover, the accompanying mathematical-statistical 
formulation of the processes forms the formal basis for a 
technical realization of communication systems and computers. 
Yet Shannon deliberately excluded important aspects of 
information such as semantics because they seemed irrelevant 
to the technical realization of his concepts.  

Contrast this with Albus’ (1991) model.  As noted by Gudwin 
(2000) this is very similar to a theory proposed by the 
Philosopher Charles Peirce’s and is a pragmatic definition. It 
presupposes an agent governed by goal-oriented decisions 
based on knowledge and it presupposes the system is able to 

organize acts in a way to achieve this goal.  As such it 
employs some semantic principles to rise above Shannon's 
information theory (IT).  IT owes some of its success to the 
fact its formulas can immediately be applied to practical 
problems, but I believe that the omission of  a semantic 
aspects limits it utility. Albus’ (1991) construct builds on the 
ubiquitous and parsimonious cognitive idea of a "rational 
agent' using 'knowledge' to 'succeed' in the world.   Various 
studies and traditions have qualified the notion of rational 
agents making them more bounded, approximate, and non-
monotonic. Taken as a whole, it is clear that rationality is 
neither omniscience or optimal.  More accurately agent 
rationality is always limited by processing, perception and 
knowledge and thus we might speak of it as pragmatically 
seeking to optimize expected, not actual utility. One of the 
conflicts in the IS field has been how central these aspects are 
to a cognitive agent. Gudwin (2000) notes that a difference 
between Albus & Peirce is that the Albus’ definition doesn’t 
impose the necessity of having a measure of how much of a 
goal is being achieved, a topic related to pragmatic definitions 
of success.   
 
All of which serves to illustrate the distance the IS field is 
from reaching convergence.  The situation is one of 
accumulated complexity. We can see part of the problem 
when we look at ontological definitions of some of the key 
typically cited concepts: knowledge, success, appropriate 
rational, task of defining such words raises questions that 
involve almost every other aspect of ontology (Sowa, 2000).2  
Consider the concept of rational agents as those agents that 
perform rational actions.  Which are in turn requires the 
meaning of doing the “right” action. The “right” action is one 
that will cause an agent to be the most successful. “Success”? 
Can we define it as a simple Performance measure? Well 
there are several simple performance measures for a cleaning 
robot (see Gunderson and Gunderson, 2003 for a discussion of 
related issues on the performance of a cleaning robot).  There 
are immediately pragmatic issues of what we mean by 
successful cleaning.  Is it the amount of dirt cleaned up by 
robot? Is this relative to total amount and standards? 
Is it the number of clean tiles on a floor or the number of clean 
tiles after each circuit? Which is better?  Pragmatic 
philosophers point out that we can design success according to 
what is wanted or how one thinks an agent should behave.  If 
we design it as we want it we are not giving the agent the 
possibility of rational awareness of how goal performance is 
being measured. We might agree with Pragmatists like Charles 
Pierce that this is a missing aspect of intelligent behavior. 
Peirce’s ideas on the components of a rational process this is 
taken up more fully in Section 3.   
One popular assumption affecting the field’s strategy is the  
idea that intelligence arises from the interaction of a very large 

                                                           
2 An even stronger argument over linguistic problems with IS 
concepts is made by Cottam et al.  (2003) in this Proceedings. 
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number of basic components and thus there are few 
simultaneously general and powerful laws for intelligence.  
The implication is that we need to cast a large net of many 
functions and expect many “micro” principles to apply.  
However to philosophers like Fodor (2000) an enumerative 
functionality strategy is a sign of flaws in the “normative” 
conceptual tools of IS.   The underlying flaw is that making 
functional mappings of inputs to outputs part of a symbolic 
processing paradigm that using many implicit assumptions 
about central problems, provides no real explanation.  To take 
an overly simple example, consider the functional explanation 
of intelligent systems’ ability to “cluster, classify and 
categorize the acquired information”.  One may postulate the 
existence of a "set of classifying functions" which selects 
appropriate input. Such explanations are arbitrary starting 
points if not “vacuous. It is a natural human tendency to 
ascribe mental faculties to a system in such a direct way to 
bypass legitimate philosophical issues.  Going the other 
direction away from functional approaches to pure 
subsumption architectures doesn’t fully handle this problem.  
As Gudwin (2000) argues , while subsumption practically 
situates an agent  and handles the behavioral aspects of 
intelligence, there are severe constraints in such applications.  
For one thing such systems don’t explicitly know its 
objectives and thus cannot provide a guaranty that goals will 
be met. They also depend on an adequate specification of the 
set of available behaviors. 
   
One way of to gauge IS progress is to look at extensive work 
in related areas that are both simpler and have started earlier.  
Naive Physics (Hayes, 1985) and Complex Problem Solving 
(Funke 1995) are useful examples. It is almost twenty years 
since Pat Hayes' "Naive Physics Manifesto" first proposed a 
research program to formalize and implement physical 
reasoning at the commonsense level –a useful “module” for a 
complete IS. Generally, the proposed methodology for 
representing commonsense knowledge  used first-order logic 
& its variants, while assuming the existence of an automatic 
deduction system which would provide “heuristic adequacy” 
given the epistemological strength of the representation. This 
type of commonsense reasoning would be an essential part of 
a practical IS giving it a capability to understand, and interact 
with, the everyday world around it. As a strategy this is a 
much simpler goal than building a full IS including agent 
abilities where cognition and intentions adds considerable 
complexity.  The experience in Naïve Physics, however, has 
been one of very slow progress and as noted by Davis (1999) 
beset with many foundational issues.  For example, how do we 
define & scope naïve physics?   How do we handle intuitions 
or agent intentions?  Over time researchers have tried 
sophisticated representations beyond first order and modal 
logic, but the problems of common sense have not yielded 
easily.   A review by Watt (1997) found several flaws in the 
work including: ignoring control issues (which hasn’t proved 
successful in practice); the assumption that representations can 
be separated from the use of those representations (which is 

also suspect), and the need for some measure of heuristic 
adequacy. In critiquing Hayes’ strategy of ‘micro-worlds’ 
(small isolated domains such as the behavior of different 
forms of liquid) to make common-sense reasoning tractable, 
Watt (1997), notes that  this seems to have merely pushed 
many of the real problems into a future integration domain 
integration task –something that  few have tried. 
 
Complex Problem Solving (Funke 1995) is another related 
effort to model thinking and reasoning that  started with 
experimental tasks (also called Microworlds as in Niave 
Physics) that are dynamic, time-dependent, and complex. 
Firefighting and soccer are examples of such problem 
domains.  Compared to traditional “Problem Solving”, 
Complex Problem Solving (CPS) radically changed the kind 
of phenomena reported (in the real world states are continuous 
with no uniquely defined states); the kind of explanations 
looked for, & even the kind of data that is generated.  
Information is uncertain/ incomplete, dynamic and 
unpredictable.  As noted by Quesada et al (2002) the results 
obtained to date in CPS are: 
 

“ far from being integrated and consolidated. This 
fact led Funke (1995) to affirm that ‘Despite 10 
years of research in the area, there is neither a 
clearly formulated specific theory nor is there an 
agreement on how to proceed with respect to the 
research philosophy. Even worse, no stable 
phenomena have been observed’ ... Almost another 
10 years after Funke’s argument, although more 
empirical research has been conducted in the area, 
we cannot say that the situation has changed 
drastically. At this moment, there is no theory able 
to explain even part of the specific effects that have 
been described or how they can be generalized. A 
theory of generalization and similarity is as 
necessary to psychology as Newton's laws are to 
physics.” 
 

Taken as a whole I speculate that the current state of work (in 
both IS and related, if simpler, problem fields) seems a bit like 
a Ptolemaic paradigm.  That is, aggregate functional models 
are a bit like Ptolemaic approaches as they break complex 
intelligent behavior into neat, related components that are 
analogous to  “perfect circular motions”.   It is a system of 
cycles and epicycles with certain perfect cognitive process as 
the functional/circular primitives that we are willing to accept 
as heuristic devices for their practical computational 
usefulness.  Such core functions are added all to in an ad hoc 
way as required to obtain any desired degree of performance 
and accuracy.  Using large combinations of constructions we 
are able to measure performance in some small problem 
domain for some of the agreed upon intelligent behaviors 
within the standards of observational accuracy.  The concern 
is that, like a Ptolemaic system, the model is more an after-
the-event description then a deep capture of the underlying 



problem. Such descriptions may be very useful, making it 
possible to economically summarize a great amount of brute 
observational data, and to produce empirical predictions, but 
they often prove to be brittle, do not scale and might not be 
fruitful to further predictive IS research. To illustrate further, 
consider cognitive research functional “components” as in 
Figure 1.  They aren’t  really independent – they are highly 
interdependent.  Systems built with such modules have many 
questions that can not be answered as well answers that are 
extremely complicated due to component interactions.  For 
example Schoelles & Gray (2000) studied interactions 
between perception, cognition and motor performance on 
target tasks.  They used the ACT-R/PM architecture 
(Anderson & Lebiére, 1998) which combines ACT-R’s 
general theory of cognition with modal theories of visual 
attention (Anderson et al 1997) and motor movement (Meyer 
& Kieras 1997). In time critical situations selecting “threat 
value objects” Schoelles &  Gray (2000) needed to  propose 
additional/ad hoc  microstategies (epicycles?) by which 
subjects manipulate interactions between perception and 
motor acts to improve performance. Similar qualifications and 
epicyclical additions  have been advanced about the structure 
of agent knowledge and useful meanings of "success".   
 
Using a Ptolemaic metaphor affords a discussion of how 
particular models arise from more general theory.  Classically 
one paradigm has largely ignored other paradigms talking past 
issues along with anomalies in observations they predict.  
There seems to be plenty of room in  alternate approaches to 
IS for such ignoring of competing theories.  Thus in the 
current situation, alternate paradigms aren’t easy to knock 
down and reject.  They hold on.  Perhaps in IS we need an 
integrating hyper paradigm to provide points of contention and 
agreement.  
Switching to multi-paradigm integration might involve a new 
“world view”.  It should be rational and pragmatic. 
 
The remainder of this paper is organized as follows.  First 
basic pragmatic principles, positions and issues are reviewed 
as context.  Then pragmatic definitions of knowledge are 
elaborated and related to Sowa’s Knowledge Soup concept as 
a contemporary inheritor of the pragmatic enterprise. A final 
section concludes with some implications and directions.  
 
2. The  Pragmatic View of  Success, Instrumentalism and 

Intelligence  
The Pragmatism philosophical movement was developed over 
a century ago as an American approach to the great problems 
of philosophy such as the truth & knowledge.  Pragmatism 
proceeds in a modern, logical but practical way and has tended 
to criticize traditional philosophical outlooks (Descartes, Kant 
etc.)  in the light of scientific and social developments. To 
pragmatists most propositions and questions discussed on 
philosophical matters were not so much false as senseless and 
lacking of meaning.  Pragmatism’s basic position holds that 
both the meaning and the truth of an idea is a function of 

implications that are often described as practical outcomes.  
Thus, in discussing good and evil pragmatists saw it as 
dependent on its practical effects (or success) on human 
behavior.3  Fundamental to pragmatism is a strong anti-
absolutism tenet helpful to Science: the conviction that all 
principles are to be regarded as working hypotheses rather 
than as metaphysically binding axioms. Charles Sanders 
Peirce (All citations to Peirce are from Hartshorne, C. and 
Weiss, P. Collected Papers of Charles Sanders Peirce, Volume 
5 and Volume 6, Harvard University Press, 1965)  is 
considered the founder of pragmatism4 and his views of truth, 
reasoning and knowing provides a foundation for discussion. 
Peirce developed a theory of meaning in the 1870s, holding 
that there is an intrinsic connection exists between meaning 
and action -- that the meaning of an idea is to be found in its 
"conceivable sensible effects".  Peirce might say that we can 
understand a concept’s meaning by looking at the real world 
implications of various hypotheses about it. But this is far 
from a simple utility view as shown by Peirce’s elaboration:  

“the true meaning of any product of the intellect 
lies in whatever unitary determination it would 
impart to practical conduct under any and every 
conceivable circumstance, supposing such conduct 
to be guided by reflexion carried to an ultimate 
limit.” Peirce (1902) 

Thus meaning is a belief hypothesis that is provisional, 
dynamic and fallible.  Peirce centered thinking in human-
generated belief which arises through what he called "habits of 
action." Peirce would agree with a direct implication of  
Figure 1 - that the core function of thinking is as a stage in the 
production of successful action in an environment. And like 
Berg-Cross’s (2002) 3-level model, a key feature of Peirce’s 
view of intelligent behavior is an essential connection between 
“rational cognition and rational purpose”5. In proposing an 
essential relation between intelligent thought and human 
conduct, Peirce was not subordinating reason to action, 
utility/profit or individual interests. Rather, Peirce defines a 
concept ‘s meaning as a form which is most directly 
applicable to self-control in any situation and to any purpose. 
To him, the rational meaning of a proposition is its future 
potential which he regards as the ultimate test of what truth 
means.  If this definition seems vague Pierce indeed found the 

                                                           
3 The argument is further that we see in nature only that narrow 
range of physical parameters which are compatible with our 
evolution as complex, self-reproducing, learning organisms.  
4 In conflict with James’ popularization and simplification of the 
idea, Peirce later changed the name of his philosophical position to 
"pragmaticism”. 
5 A striking feature of Peirce’s theory was its supposition of 
“an inseparable connection between rational cognition and 
rational purpose; and that consideration was which determined 
the preference for the name pragmatism” 



concepts of “real” and “true” to be fundamentally slippery. 6  
Peirce’s position on these concepts is well reflected in John 
Sowa’s (2000) Knowledge Soup metaphor, which is discussed 
in Section 3.  In this view truth is not so much fuzzy as it is 
context dependent.  It is a relation between a theory and a 
model of some aspect of the world for some purpose.  For 
example, we may ask is a pizza circular or  is a ball bearing 
circular?  The answer is yes or no, depending on our purposes. 
 
The development of Instrumentalism by John Dewey may be 
seen as an elaboration on this observation. Dewey, like Peirce 
criticized the traditional notions of truth embodied as falsely 
precise logical theory of concepts, judgments and inferences in 
their various forms.   Thus Dewey made the inquiry process, 
rather than truth or knowledge, the essence of logic and of 
Science. Dewey, more than Peirce, took the time to explore 
the larger social implications of a pragmatic view of truth and 
thus Instrumentalism prefigures the Kuhnian  social view of 
scientific truth in several ways.   Given the prior reference to 
Ptolemaic models, a digression to Kuhn is illustrative since he 
uses the Copernican revolution from Ptolemy’s thought as his 
driving example. 
 
Kuhn, like Dewey, focuses on process and finds a basic 
pattern, called a paradigm, from which scientists see and 
interpret the data within a particular field of empirical enquiry.  
Finding a new pattern/paradigm, as Copernicus did, can cause 
sudden, irreversible shifts in understanding.  This reflects the 
social nature of scientific truth. Thus, once we have seen a 
good, new paradigm, and the relevant data in light of it, it is 
not easy to ignore it, and to return to the state of seeing just 
through the old paradigm because paradigms are, at least 
initially incommensurable. Which is to say, that competing 
theories  involve different schemes of organization that allow 
no common standard of measurement.   Taking IS 
performance as the topic then, one may hypothesize that until 
we agree on the outline of the whole of “Intelligence” about 
whose components we are arguing, we have inadequate 
common ground for communication, since Kuhn argues that  
'parts' are relative to their wholes and hence have no meaning 
(or a different one) if taken out of their context.  I attribute 
some of the difficulty in the areas of Naïve Physics and CPS 
to the absence of goals & intentions in the meaning of core 
concepts.  We have similar challenges in defining IS 
performance. 
 
In concluding this section we note that the broad influence of 
pragmatic approaches of the early 20th century waned  as  
people like Church and Turing developed classes of 

                                                           
6   John Sowa quotes Peirce’s conjecture that “.. truth is rather on the 
side of the Scholastic realists that the unsettled is the primal state, and 
that definiteness and determinateness, the two poles of settledness, 
are, in the large, approximations, developmentally, epistemologically, 
and metaphysically. “ 
 

computable functions and viewed these operations as 
analogous to what a mathematician does while  "computing" a 
function in the sense of evaluating it by application of a rote 
procedure. This powerful declarative approach blossomed into 
a computational theory of intelligence and seemed to leave 
Pragmatism behind as it  moved on to correspondence & 
coherence theories of truth.   However, pragmatic discussion 
seems to be on the increase as difficult problems are 
addressed.  One may find pragmatic approaches in collections 
like Giere (1992) who notes that "the only form of rationality 
that exists is the instrumental use of empirically sanctioned 
strategies to achieve recognized goals". Pragmatic principles 
are also seen in arguments by Fodor (2000) ranging from of 
the need for pluralism to problems in the semantics of mental 
States. Indeed the spirit of PerMIS work is solution-driven, 
usually starting from some computational mechanism (such as 
symbol processing or neural nets) and arguing what 
phenomena it can account for. I believe there are several 
reasons that such pragmatic formulations are back,  including 
the discomfort of an increasing Ptolemaic situation along with 
the realization that foundational problems that beset cognitive 
science itself. Also a degree of pluralism and relativism is 
more fashionable in part because past criticisms, such as 
Wittgenstein’s, have never been addressed.  For example, 
Wittgenstein argued that most philosophical questions and 
propositions, such as underlie our scientific theory, result from 
the fact that we do not understand the logic of our language, 
which we use to describe, formulate and pass on in Science.  If 
this view is correct the IS field is simultaneously using several 
practice paradigms which makes it is difficult, if not 
impossible, to agree on key issues. Kuhn argued that by 
naively trying to win an argument one first acknowledges 
some aspect of  the paradigm one is wishing to leave behind. 
But the plausibility, for example, of Copernican cosmology 
could never be demonstrated in terms of the Ptolemaic system. 
Typically what is needed is for the new paradigm first to be 
adopted in the hope that it will commend itself as a more 
adequate or satisfying frame within which to make sense of 
the relevant data. I take the implications and guidance for this 
to mean that the incremental, feature adding approach to the 
complexity of an IS is now faced with several new concepts 
and terms about intelligence, not addressed in and competing 
with the modal model of IS – the  original symbol processing 
approaches.  This paradigm is in competition with a Peircian 
view of knowledge, the Connectionist approach, evolutionary 
systems and new fuzzy additions to cognition and language 
that Zadeh (2002) summarized at PerMIS.  Connectionism, for 
example, embodies a very distinctive characteristic to 
distinguish cognitivism without repudiating cognitivism itself.   
Instead it is simply providing an alternative to the standard 
rules and representation view of cognition. But it is an open 
question whether it an adequate theory without proposing 
some symbolic processing in addition to sub-symbolic 
processes  Zadeh (2002, 2003) takes a completely different 
tack,  espoused the centrality of abstract, generalized 
knowledge that in turn affords  new  IS formulations such  as 



perception-based language for computation  He argues, for 
example, that it is not possible to formulate a general 
definition of causality within the conceptual structure of 
traditional, bivalent logic.  Instead causality is an inherently 
fuzzy concept because it is always a matter of degree. 
Likewise he proposes  a “Precisiated Natural Language” based 
on a perception-based theory which gives an agent the 
capability to operate on perception-based information. 
Generalizations from this theory are significantly more 
complex than traditional “measurement-based versions”. In 
this instance, as in many others, Zadeh argues that an up front 
complexity is the price that needs to be paid to reduce the gap 
between theory and reality.  
 With this as background the next section turns to continuing 
problem with the nature of knowledge. 
And  describes John Sowa’s reformulation of  Peirce’s view 
on reasoning and knowledge.   
 
3. Knowledge Soup & Pragmatic Reasoning  
 
Knowledge plays a key role in traditional computational view 
of cognitions as well as new paradigms as described above.  
Traditionally knowledge representations have both semantic 
and syntactic properties, but processes of “reasoning” are 
responsive only to the syntax of the symbols.  In this view 
“computation” is formal symbol manipulation (I.e., 
manipulation of symbols according to purely formal--i.e., non-
semantic--techniques.) and is equivalent to reasoning.  The 
computational account of cognition depends essentially upon a 
prior claim that intentional “states” involve symbolic 
representations. Accordingly, these representations have both 
semantic and syntactic properties, and processes of reasoning 
are performed in ways responsive only to the syntax of the 
symbols--a type of process that meets a technical definition of 
‘computation’, and is known as formal symbol manipulation. 
(I.e. manipulation of symbols according to purely formal--i.e., 
non-semantic--techniques. Peirce challenged just such simple 
concepts of context free propositional meaning, seeing 
meaning as a flexible, contextual form most directly 
applicable to self-control in any situation and related to 
intention and purpose. 
 
Newell (1982) moved the AI field in this direction by 
introducing a separate, higher level knowledge concept to the 
symbol-processing formulation making it distinct from the 
symbol level in which representation (e.g.  logic) lies.  Newell 
also emphasizes an abstract but pragmatic view in proposing 
that this view of knowledge permits prediction and 
understanding behavior “without having an operational model 
of the processing that is actually being done by the agent." 
This is a richer model of knowledge still slowly maturing, but 
it is worth looking at such knowledge in actual systems as 
exemplified by Knowledge-Based Systems (KBSs).  Do they 
measure up to these concepts of goal-oriented knowledge?  
One way to explore that question to consider user experiences 
with KBSs, their reasoning and knowledge.  At a first glance 

we see that the early formulations of knowledge bases 
presupposed an answer to an old philosophical question.  That 
is, the typical knowledge engineering approach assumed that 
knowledge is available as some type of frozen thing existing 
in experts and transportable unchanged to the knowledge 
engineer for storage in a knowledge representation. One sign 
that such a knowledge chain (from expert mind to internal 
storage)  has problems is that the resulting knowledge often 
appears incomprehensible to end-users.  Users site differences 
in meaning based on context and sometimes use fuzzy 
concepts as previously noted.  This is one of the reasons that 
KMSs are often rejected (Woods et al., 1990). Brezillon and 
Pomerol (1996) discuss the KBS rejection problem from the 
point of view of the social nature of an "intelligent" medical 
diagnosis.  They argue that when the expected output of a 
system is a diagnosis, healthcare workers orient to this output 
as a confirmation of or as a disagreement with their own 
diagnosis "hypothesis".  If there is a conflict they expect to 
enter into a dialog to solve the conflict.  But KBSs don't 
typically include the functionality of explanation, 
understanding dialog etc.7  This is vastly beyond the network 
of their isolated expertise, which may answer "What is the 
fault?" or "What is the problem?” Kidd and Sharpe (1988) also 
note that users of diagnostic KBSs more typically are seeking 
answers to formulations such as "Why did fault A happen?”, 
"Will remedy B fix Problem Y?"  or "Can I test C without 
affecting the level of D?"  A Peircian view might offer 2 
suggestions.  First as to the knowledge in the system, he would 
recognize that captured, propositional knowledge lacks 
connections to uses of that knowledge to achieve goals (such 
as described in Berg-Cross, 2002). Second at the level of 
system, Peirce might argue that the behavior of such KBSs is 
not really intelligent, because they cannot operate on their own 
knowledge to refine the meaning through social (system and 
human) interaction over time.8   
 
A still stronger critique of the knowledge in ISs/KBSs 
concerns the knowledge in World Models, such as depicted in 
Figures 1 or 2. World models are useful for many things 
including as affordances to navigate in the physical world and 
handle objects.    World models should also allow an IS to 
anticipate the results of their own actions, a process simpler 
for interacting with non-agent objects than with Agents.  
Pomerol (1995) notes that many typical industry process 

                                                           
7 Zadeh might argue that one reason is that perceptions play a key 
role in human cognition but not in current machines implementations 
of intelligence.  
8 Dewey anticipates some K-Rep issues as a "verification" issue.  
Verification of knowledge is not as a passive "looking-at" the 
sensibilia "given" in experience --rejecting this as another example of 
the hold of "specator theories of knowledge". Rather, verification is 
an integral part of the process in which human agents interact and 
cope with problems that are thrown up by their environment -- 
practical, rather than theoretical problems. 

 



KBSs assume a simple, direct model relating action to results.  
This may be appropriate for such processes where there is a 
controlled environment and the average time between actions 
narrows the degree of uncertain change that might develop.   
In Berg-Cross (2003) a more elaborate world model gets 
coordinated by agent plans and belief modeling using a Belief-
Desire-Intention (BDI) agent model. A BDI model structures 
knowledge within an agent – in terms of beliefs, goals and 
plans – which simplifies communication and allows 
coordination between agents.  Zadeh (2002) would add that 
the fuzziness of causality is not addressed by traditional 
implementations and thus are applicable to only a subset of 
situations. Outside of these realms increasingly fuzzy models 
of causality may be needed.  A uniquely Peircian view of 
world model knowledge and its relation to pragmatic 
reasoning has been constructed by Sowa (2000) to which we 
now turn. 
The general pragmatic framework allows for several kinds of 
reasoning and with supports for declarative knowledge, 
explicit definitions, procedural knowledge and the idea of 
family resemblance.  Sowa (2000) organizes Peirce’s 
Rational-empirical reasoning into three parts: 

1. Induction or learning which start with observations  
and looks for commonalities (a basic cognitive 
process) deriving a theory to summarize the data.  

2. Deduction or inference which starts with a theory and 
observes some new data.  Then uses the theory to 
logically generate implications   

3. Abduction or guessing which starts with 
disconnected observations and guesses 
(hypothesizes) a theory that relates them. The test of 
this hypothesis is by means of pragmatic tests using 
subsequent induction and deduction.9  

 
These processes are organized into an overall system of 
(Figure 2) by Sowa using an additional idea -   knowledge 
soup.   Knowledge soup captures the idea that real human 
knowledge is fluid and lumpy, with adherable chunks of 
theories and hypotheses that float in and out of awareness.   As 
knowledge circulates through this process it becomes more 
meaningful, truthful, validated and thus better corresponds to 
models of reality and is more coherent.   
The process allows for a natural history of knowledge flowing 
from conjectures and theory to prediction and groundings in 
observations both at the formative and subsequent part.  Taken 
together it structures Peirces idea true meaning of any 
“product of the intellect” as that which  would impart to 
practical results under “any and every conceivable 
circumstance, supposing such conduct to be guided  

                                                           
9 An implication of such a model of reasoning is that  science comes 
naturally to us. 
 

 
                                                

Figure 2 Sowa’s summary of Peirce's rational-empirical 
reasoning theory 

by reflexion carried to an ultimate limit.” It is worth  
noting that there are variety of natural and social constancies 
that make meaning converge to allow correspondence to both 
the world and between individuals. 
Figure 3 expands Sowa’s discussion to further `illustrate 
relations between knowledge soup contents and the   world.  
Reality stands on the left while on the far right is a lumpy part 
of our knowledge soup externally expressed as 
formal theory in represented in predicate calculus such as 
Peirce pioneered.    But as Johnson-Laird (2001) observed, 
brains do not use Logic, they use "mental models".   In the 
middle is more recent formulation of such a larger Tarski- 

 
Figure 3 Denotation and Approximation Mappings between 

Models, Theory and Reality (Sowa 2000)  
 
style model expressed by Sowa as a graph. World models are 
also part of our knowledge soup but their expression is more 
abstract and approximate.  In the model nodes represent 
individual model entities while arcs represent relationships.  
The figure represents a part of what we might call pragmatic 
model knowing represented as a mapping from the symbols of 
the formal theory to vaguer symbols of the model.  Sowa 
proposes that this mapping determines the denotation of 
propositions as having a binary {true, false} truth value. We 
might speak of these as our formal abductive hypotheses about 
the larger model.  Even the symbols and logic chosen to 
represent these may be considered hypotheses of what will 



best represent the larger, soupy model.10  The semiotic nature 
of the symbol to symbol mapping is an inherent feature of this 
view.  However the mapping from the model symbols to 
certain aspects of the world relates to the pragmatic adequacy 
of the model as an approximation designed and intended for 
some particular purpose.  But agent purposes are endless and 
reflect the situatedness of our cognition so there is no simple, 
ultimate model. As a consequence when we express the 
central Tarskian model in formal mathematical structure we 
are forced to use some abstract simplifications of tokenized 
symbol types. These are abductive hypotheses at a more 
abstract level.   Language is not shown in the diagram, but we 
see it as a more informal attempt to express a portion of the 
model in the way a spoon might take a portion of the soup, 
lumps and fluid together. This seems to be a useful, social  and 
intelligent adaptation of limited, rational  intelligent  to the 
complexity of the real world.  Language is obviously 
symbolic, and we share these symbols over groups.  Language 
has pragmatic meaning to the extent that some conventions 
hold within the linguistic community, but different people 
have different knowledge soup meaning background or , 
views, theories, purposes, and vocabulary. For Peirce every 
natural language utterance has three components, (s,p,b): 
Speech act s, which states the purpose at a 
performative/intention level, a Proposition p, which states the 
content at what we might call a conscious level and 
Background knowledge b, which is unstated, but assumed as 
the fluid within which the nuggets of propositions fit.  Thus a 
speaker may imply many things more than in the propositions 
of a sentence.   These are its full “meaning” including the 
purpose for which a sentence is "used" (Grice, 1975).   
 
There are a number of interesting relations between Figures 2 
and 3 worth making briefly in this regard, not only for 
individual agents but for communities of agents who share 
theories and models through formalisms and language.  
Knowledge soup gets populated with connected pieces as an 
agent’s hypotheses and theories flow around the empirical 
reasoning cycle.  Validated theory and models get expressed 
and shared.  Thus Albus and Meystel’s  (2001) reference 
model architecture expressed in terms of the Real-time 
Control System (RCS) may not be all the knowledge soup 
there is to the IS issue, but it  solidifies a significant  portion of  
current theory and practice to achieve a coherent model for the 
design of intelligent systems.  This is useful as tests of 
approximation to reality.  It is also worth noting in passing 
that the rational-empirical reasoning theory provides a natural 
                                                           
10 Sowa discuses written symbols as representing axioms of a theory, 
whose implications are some abstract set of propositions.  Peirce 
might note the pragmatic semiotic nature of such mappings as part of 
the task to ascertain laws by which intelligence uses one sign to 
generate another, as “one thought brings forth another." Peirce saw 
pragmatic semiotics as the study that relates signs to agents who use 
them to refer to things in the world and to communicate their 
intentions about those things to other agents who may have similar or 
different intentions concerning the same or different things. 

framework such things as Piagetian assimilation and 
accommodation such as addressed by Arata (2003) in this 
Workshop. 
 
It is also worth noting that Sowa points out several different 
places where vagueness could be located in the model.  His 
chief argument is that there is a " fallacy of misplaced 
fuzziness", when fuzzy theorists associates  fuzzy numbers 
with the truth values determined by the mapping to theories on 
the right. Sowa’s formulation sees fuzzy numbers as better 
applied to the approximation on the left – mapping  from our 
model to reality.  It is in this language that we have the 
vagaries that Peirce alludes to. 
 
Among other things the knowledge soup and  rational-
empirical reasoning theory helps us understand certain  
problems in acquiring knowledge for “bases”.   We are all too 
often capturing nuggets with the soupy fluid. As a by-products 
of our mental models we make mistakes because of the 
efficient way but ineffective way we represent and reason 
about the world. There is an analogous knowledge problem in 
our ISes.  Problems with simple knowledge bases have lead to 
more sophisticated efforts to capture knowledge within a 
larger context that provides its relevance fluidly across related 
situations. For example (Russell & Norvig, 1995, pp.20-21) 
discuss the challenge of capturing “background knowledge” 
functions.   In general IS implementations lack background 
knowledge and/or run into intractable computations to make 
up for limitations in knowledge representation structures.  
There is an extensive literature on such addressing such 
problems as situated knowledge and the role of context in 
knowledge.  This literature often combines recent cognitive 
theory with a pragmatic philosophy framework that includes 
the environment as a major factor in intelligent systems.  In 
such efforts, functions need to be supported in a wide context 
including inter-agent environments that are developmental 
drivers of intelligence. 

 
4.  Conclusion 

 
This paper has extended the discussion of ISes by exploring 
the idea of pluralistic intelligence in a fashion based on 
pragmatic philosophy’s approach to the nature of intelligence 
and truth.  Two types of implications are worth noting, one at 
the individual, system level and the other at the level of 
Science, its goals and practice.  At the system level internal, 
pragamtic realists like James and Dewey believed that 
intelligence, like the external world, can be”correctly/ 
pragmatically” described from a number of different 
perspectives.  These views and hence the ”meaning” of things 
reflect an agent’s internal interests and purposes. Thus 
external definitions at the behavioral level are not adequate in 
isolation.  An essential part of the pragmatic view have been 
implemented as part of BDI architected agent systems.  BDI 
architectures provide agents goal-directed behavior. And this 
notion of intentions is practical because it implies some 



commitment to these actions to achieve a goal. Further. As  
Norling et al (2000) argues there is a very pragmatic basis for 
intentions – they  help prevent complicated reasoning at every 
time step, since once an agent has decided to do something, it 
will continue to do it until it becomes either impossible or 
unnecessary.  This applies both to physical actions and to 
plans to test hypotheses about the world as Piaget might have 
described such cognition. 
 
Perhaps Peirce had the clearest things to say about the 
balancing of the goals of science and the fallible role of belief 
in its practice. We have a goal of describing intelligence but 
not even the most advanced scientific one, is Nature’s final 
one. As is true of other scientific attempts there is no simple 
path to the truth about intelligence.  Descriptions of 
intelligence as available to us, even as scientists, are grounded 
in our purposes & paradigms as professional investigors.  Our 
practices, their truthfulness and reference are actually ”internal 
to conceptual schemes serving different purposes.”  This 
position is well captured in Sowa’s knowledge soup metaphor 
and needs further illustration to determine its usefulness. 
 
Taken together one direction of the argument leads to the idea 
that our approaches to IS work seems a pre-scientific 
Ptolemaic one, in that there is no consensus on theory and we 
have many incompatible/incomplete theories.  For example, 
there are fundamental issues of how agent knowledge relates 
to the world.  As a result differing approaches are challenged 
to agree on key experimental performance measures of 
mediated behavior.  We may be able to use some traditional, if 
somewhat lose, criteria of scientific explanation to help, 
including symmetry, elegance, and simplicity to select 
performance measures. I see these as abstract abductive 
hypotheses such as discussed in the prior section.  For some 
researchers fuzzy and connectionist approaches seem to 
provide a firmer base for knowledge, but without a connection 
to symbols these seem incomplete.   At the level of Science it is 
quite possible that we are in a new Ptolemaic world where 
there is a fundamental mismatch of the various connectionist, 
fuzzy & traditional symbol-processing systems concepts and 
we need a new scientific synthesis.  If so, some substantial 
effort may be needed to find an interaction language between 
these realms. We may need an integrated, hybrid paradigm 
such as bridges the quantum and mechanical level in physics.  
Not an easy task, but an intellectually interesting one and 
Sowa’s knowledge soup synthesis may represent a useful 
framework for some integration. 
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